

Guadalupe River – Tasman Dr. to 1880

Conceptual Alternatives
Presented by: Katie Muller, Project Manager

Presentation Agenda

Engineering Planning Process

- Phase 1: Problem Definition
- Phase 2: Conceptual Alternatives Analysis (19 Alternatives)
- Phase 3: Feasible Alternatives Analysis (8 Alternatives)

Questions and Public Input

The Planning Process 2. Conceptual 3. Feasible Alternatives Alternatives Develop **Public** Final Feedback Report 1. Problem Project Definition Analyze & Refine Alternatives 4. Staff-Recommended Valley Water **Alternative**

Phase 1: Problem Definition

Guadalupe River Background and History

Guadalupe Watershed

- All rain ends up in Guadalupe River
- 7 Reservoirs
- Three "sections" of river:
 - Upper
 - Downtown
 - Lower

Lower Guadalupe River Project

- Completed2004
- 100-Year flood protection
- Levees and Floodwalls
- Bridge Improvements

Phase 1: Problem Definition

Defining the Problem and the Project's Objectives

Typical Section: Trimble Road to Montague Expressway

Problem

Channel is under design capacity

Current Condition

Causes

- Vegetation overgrowth
- Levee encroachment in to channel

Project Objectives

Restore 1-percent flood capacity

Other Criteria

- Minimize future O&M activities
- Maintain/enhance public recreation and access
- Obtain community support for the Project

What is 100-Year?

10

1% probability of occurrence in a given year

- 1 in 100 chance
- 26% chance over life of 30-year mortgage

Why 100-Year?

 FEMA National Flood Insurance Program Maps Note: Does not eliminate all flood risk!

Preparations for This Winter

Lexington Operations
Operate Reservoir for Flood
Risk Reduction

Storm Preparedness

Valley Water Field Information
Teams (FIT), City Coordination,
and Emergency Action Plans

Phase 2: Conceptual Alternatives Analysis

Alternatives Hierarchy

Conceptual Alternatives

Feasible Alternatives

Staff-Recommended Alternative

Conceptual Alternatives

- High-level
- Anything within realm of possibility

19 Alternatives identified

Alternative A – No Project

Types of Flood Risk Reduction

Common Flood Risk Reduction Elements

Floodwall Concrete or sheet pile barrier

Headwall Floodwall on a bridge

Common Flood Risk Reduction Elements

Passive Barrier
Self-raising barrier activated by
water pressure

Levee Earthen barrier

Alternative B – Floodwalls

Cost: \$65 - 180 million

Bridge Headwalls

Passive Barriers

Alternative C – Raise Levees Cost: \$70 – 80 million

Approximate Scale (ft)

Alternative E – Raise Bridges Cost: \$190 million

Alternative G – Replace Levee with High Floodwall

Cost: \$190 million

Alternative K – Channel Widening

Cost: \$650 million

Types of Flood Risk Reduction

Reduce "Roughness"

Water moves faster, has more space

Alternative L – Vegetation Removal

Cost: \$100 to \$840 million

Alternative M – Channel Paving

Cost: \$170 million

Types of Flood Risk Reduction

26

Common Flood Risk Reduction Elements

Bypass Culvert
Concrete pipe that diverts water

Detention Basin
Open space area that holds
floodwaters

Common Flood Risk Reduction Elements

Operate Reservoirs for Flood Storage
Use reservoir to store flood water

Alternative D – Off-stream Detention

Cost: \$85 - 200 million

Alternative F – Bypass Culvert

Cost: \$300 million

Alternative H – Add Outlet Capacity to Lenihan Dam

Cost: \$33 - 110 million

Alternative I - Raise Lenihan Dam

Approximate Scale (ft)

Cost: \$110 million

Alternative J – Re-Operate Lenihan Dam

Cost: \$11 million

Alternatives Hierarchy

Feasible Alternatives

- More detailed
- Must be practical
- Must pass screening

8 Alternatives identified

Conceptual Alternatives Screening

Next Phase: Feasible Alternatives Analysis

Alternative A – No Project

Alternative B – Floodwalls

Cost: \$65 million

Alternative B.2 – Floodwalls & Closed Roadways

Alternative C – Raise Levees

Cost: \$80 million

Alternative C.1 – 3 ft Floodwalls & Raised Levees

Alternative D.2- Off-stream Detention: 5 ft

Alternative H.1 – Outlet Capacity in Exist Tunnel

Alternative J – Re-Operate Lenihan Dam

The Planning Process: Next Steps

Project Next Steps

Project phases and projected schedule

Questions

1. What did you like about the Alternatives?

2. What didn't you like about the Alternatives?

3. Is there anything else we didn't consider?

Alternative A: No Project

Alternative C.1: Floodwalls +Levees

Alternative D.2: **Detention Basin**

Alternative B.2: Floodwalls/Close Bridges

Alternative C: Raise Levees

Alternative H.1: **Upsize Lenihan Outlet**

Alternative J: Re-Operate Lenihan

Subscribe, Follow & Contact us

@valleywater

@valleywater

@valleywater

Email notifications: www.valleywater.org/guadalupe-river-tasman-i880

Katie Muller,
Project Manager
408-630-4363
kmuller@valleywater.org

Jose Villarreal Community Liaison 408-630-2879 jvillarreal@valleywater.org

Valley Water

Clean Water • Healthy Environment • Flood Protection